Holistic Oncology’s Cannabis Therapies are Scientifically Proven to be Safe, Efficient and Cost friendly

In this blog article, i will first review some of the evidence of cannabis’ medical value for cancer.  (Section A). Thereafter, i will delve into mechanims. (Section B).

Under construction

Section A

Evidence that Cannabis inhibits specific cancer pathways

CBD represents the first nontoxic exogenous agent that can significantly decrease Id-1 expression in metastatic breast cancer cells leading to the down-regulation of tumor aggressiveness.[1],[2

Cancer Cell. 2006 Apr;9(4):301-12.

The stress-regulated protein p8 mediates cannabinoid-induced apoptosis of tumor cells.

Carracedo A1, Lorente M, Egia A, Blázquez C, García S, Giroux V, Malicet C, Villuendas R, Gironella M, González-Feria L, Piris MA, Iovanna JL, Guzmán M, Velasco G.

Author information

Abstract

One of the most exciting areas of current research in the cannabinoid field is the study of the potential application of these compounds as antitumoral drugs. Here, we describe the signaling pathway that mediates cannabinoid-induced apoptosis of tumor cells. By using a wide array of experimental approaches, we identify the stress-regulated protein p8 (also designated as candidate of metastasis 1) as an essential mediator of cannabinoid antitumoral action and show that p8 upregulation is dependent on de novo-synthesized ceramide. We also observe that p8 mediates its apoptotic effect via upregulation of the endoplasmic reticulum stress-related genes ATF-4, CHOP, and TRB3. Activation of this pathway may constitute

https://www.ncbi.nlm.nih.gov/pubmed/16616335

The CBD concentrations effective at inhibiting Id-1 expression correlated with those used to inhibit the proliferative and invasive phenotype of breast cancer cells. Of the five cannabinoids tested: cannabidiol, cannabigerol, cannnabichromene; cannabidiol-acid and THC-acid, it was found that cannabidiol is the most potent inhibitor of cancer cell growth. Taken together, these data might set the bases for a cannabinoid therapy for the management of breast cancer.[3]

 

Cancer Res. 2006 Jul 1;66(13):6615-21.

Delta9-tetrahydrocannabinol inhibits cell cycle progression in human breast cancer cells through Cdc2 regulation.

Caffarel MM1, Sarrió D, Palacios J, Guzmán M, Sánchez C.

Author information

Abstract

It has been proposed that cannabinoids are involved in the control of cell fate. Thus, these compounds can modulate proliferation, differentiation, and survival in different manners depending on the cell type and its physiopathologic context. However, little is known about the effect of cannabinoids on the cell cycle, the main process controlling cell fate. Here, we show that Delta(9)-tetrahydrocannabinol (THC), through activation of CB(2) cannabinoid receptors, reduces human breast cancer cell proliferation by blocking the progression of the cell cycle and by inducing apoptosis. In particular, THC arrests cells in G(2)-M via down-regulation of Cdc2, as suggested by the decreased sensitivity to THC acquired by Cdc2-overexpressing cells. Of interest, the proliferation pattern of normal human mammary epithelial cells was much less affected by THC. We also analyzed by real-time quantitative PCR the expression of CB(1) and CB(2) cannabinoid receptors in a series of human breast tumor and nontumor samples. We found a correlation between CB(2) expression and histologic grade of the tumors. There was also an association between CB(2) expression and other markers of prognostic and predictive value, such as estrogen receptor, progesterone receptor, and ERBB2/HER-2 oncogene. Importantly, no significant CB(2) expression was detected in nontumor breast tissue. Taken together, these data might set the bases for a cannabinoid therapy for the management of breast cancer.

PMID: 16818634 DOI: 10.1158/0008-5472.CAN-05-4566

[Indexed for MEDLINE] Free full text

https://www.ncbi.nlm.nih.gov/pubmed/16818634

Cannabinoids induce ICAM-1, thereby conferring TIMP-1 induction and subsequent decreased cancer cell invasiveness thus inhibits lung cancer invasion and metastasis.[5]

 

FASEB J. 2012 Apr;26(4):1535-48. doi: 10.1096/fj.11-198184. Epub 2011 Dec 23.

Cannabidiol inhibits lung cancer cell invasion and metastasis via intercellular adhesion molecule-1.

Ramer R1, Bublitz K, Freimuth N, Merkord J, Rohde H, Haustein M, Borchert P, Schmuhl E, Linnebacher M, Hinz B.

Author information

Abstract

Cannabinoids inhibit cancer cell invasion via increasing tissue inhibitor of matrix metalloproteinases-1 (TIMP-1). This study investigates the role of intercellular adhesion molecule-1 (ICAM-1) within this action. In the lung cancer cell lines A549, H358, and H460, cannabidiol (CBD; 0.001-3 μM) elicited concentration-dependent ICAM-1 up-regulation compared to vehicle via cannabinoid receptors, transient receptor potential vanilloid 1, and p42/44 mitogen-activated protein kinase. Up-regulation of ICAM-1 mRNA by CBD in A549 was 4-fold at 3 μM, with significant effects already evident at 0.01 μM. ICAM-1 induction became significant after 2 h, whereas significant TIMP-1 mRNA increases were observed only after 48 h. Inhibition of ICAM-1 by antibody or siRNA approaches reversed the anti-invasive and TIMP-1-upregulating action of CBD and the likewise ICAM-1-inducing cannabinoids Δ(9)-tetrahydrocannabinol and R(+)-methanandamide when compared to isotype or nonsilencing siRNA controls. ICAM-1-dependent anti-invasive cannabinoid effects were confirmed in primary tumor cells from a lung cancer patient. In athymic nude mice, CBD elicited a 2.6- and 3.0-fold increase of ICAM-1 and TIMP-1 protein in A549 xenografts, as compared to vehicle-treated animals, and an antimetastatic effect that was fully reversed by a neutralizing antibody against ICAM-1 [% metastatic lung nodules vs. isotype control (100%): 47.7% for CBD + isotype antibody and 106.6% for CBD + ICAM-1 antibody]. Overall, our data indicate that cannabinoids induce ICAM-1, thereby conferring TIMP-1 induction and subsequent decreased cancer cell invasiveness.

https://www.ncbi.nlm.nih.gov/pubmed/22198381?dopt=Abstract

 

Non-small cell lung cancer (NSCLC) is the leading cause of cancer deaths worldwide. Researchers have observed expression of CB1 (24%) and CB2 (55%) in NSCLC patients. They have also shown that the treatment of NSCLC cell lines (A549 and SW-1573) with CB1/CB2- and CB2-specific agonists Win55,212-2 and JWH-015, respectively, significantly attenuated random as well as growth factor-directed in vitro chemotaxis and chemoinvasion in these cells.[6]

Cancer Prev Res (Phila). 2011 Jan;4(1):65-75. doi: 10.1158/1940-6207.CAPR-10-0181. Epub 2010 Nov 19.

Cannabinoid receptors, CB1 and CB2, as novel targets for inhibition of non-small cell lung cancer growth and metastasis.

Preet A1, Qamri Z, Nasser MW, Prasad A, Shilo K, Zou X, Groopman JE, Ganju RK.

Author information

Abstract

Non-small cell lung cancer (NSCLC) is the leading cause of cancer deaths worldwide; however, only limited therapeutic treatments are available. Hence, we investigated the role of cannabinoid receptors, CB1 and CB2, as novel therapeutic targets against NSCLC. We observed expression of CB1 (24%) and CB2 (55%) in NSCLC patients. Furthermore, we have shown that the treatment of NSCLC cell lines (A549 and SW-1573) with CB1/CB2- and CB2-specific agonists Win55,212-2 and JWH-015, respectively, significantly attenuated random as well as growth factor-directed in vitro chemotaxis and chemoinvasion in these cells. We also observed significant reduction in focal adhesion complex, which plays an important role in migration, upon treatment with both JWH-015 and Win55,212-2. In addition, pretreatment with CB1/CB2 selective antagonists, AM251 and AM630, prior to JWH-015 and Win55,212-2 treatments, attenuated the agonist-mediated inhibition of in vitro chemotaxis and chemoinvasion. In addition, both CB1 and CB2 agonists Win55,212-2 and JWH-133, respectively, significantly inhibited in vivo tumor growth and lung metastasis (∼50%). These effects were receptor mediated, as pretreatment with CB1/CB2 antagonists abrogated CB1/CB2 agonist-mediated effects on tumor growth and metastasis. Reduced proliferation and vascularization, along with increased apoptosis, were observed in tumors obtained from animals treated with JWH-133 and Win55,212-2. Upon further elucidation into the molecular mechanism, we observed that both CB1 and CB2 agonists inhibited phosphorylation of AKT, a key signaling molecule controlling cell survival, migration, and apoptosis, and reduced matrix metalloproteinase 9 expression and activity. These results suggest that CB1 and CB2 could be used as novel therapeutic targets against NSCLC.

PMID: 21097714 PMCID: PMC3025486 DOI: 10.1158/1940-6207.CAPR-10-0181

[

https://www.ncbi.nlm.nih.gov/pubmed/21097714?dopt=Abstract

Researchers in lung cancers also reported that they observed significant reduction in focal adhesion complex, which plays an important role in cancer migration. Medical marijuana significantly inhibited in vivo tumor growth and lung metastasis (∼50%).[7]

Original Article

Δ9-Tetrahydrocannabinol inhibits epithelial growth factor-induced lung cancer cell migration in vitro as well as its growth and metastasis in vivo

A Preet, R K Ganju & J E Groopman

Oncogene (2008) 27, 339–346 (10 January 2008)

Abstract

Δ9-Tetrahydrocannabinol (THC) is the primary cannabinoid of marijuana and has been shown to either potentiate or inhibit tumor growth, depending on the type of cancer and its pathogenesis. Little is known about the activity of cannabinoids like THC on epidermal growth factor receptor-overexpressing lung cancers, which are often highly aggressive and resistant to chemotherapy. In this study, we characterized the effects of THC on the EGF-induced growth and metastasis of human non-small cell lung cancer using the cell lines A549 and SW-1573 as in vitro models. We found that these cells express the cannabinoid receptors CB1 and CB2, known targets for THC action, and that THC inhibited EGF-induced growth, chemotaxis and chemoinvasion. Moreover, signaling studies indicated that THC may act by inhibiting the EGF-induced phosphorylation of ERK1/2, JNK1/2 and AKT. THC also induced the phosphorylation of focal adhesion kinase at tyrosine 397. Additionally, in in vivo studies in severe combined immunodeficient mice, there was significant inhibition of the subcutaneous tumor growth and lung metastasis of A549 cells in THC-treated animals as compared to vehicle-treated controls. Tumor samples from THC-treated animals revealed antiproliferative and antiangiogenic effects of THC. Our study suggests that cannabinoids like THC should be explored as novel therapeutic molecules in controlling the growth and metastasis of certain lung cancers.

Introduction

Lung cancer is the leading cause of cancer death for both men and women in the United States (Jemal et al., 2006). The high case:fatality ratio observed in lung cancer is attributed to a poor response to therapy and the aggressive biological nature of the disease. High expression of the epidermal growth factor receptor (EGFR) and/or its ligands is common in non-small cell lung cancer (NSCLC), and correlates with a more aggressive disease, resistance to chemotherapy and poor prognosis (Salomon et al., 1995). A series of targets and therapeutic strategies for the treatment of lung cancer are currently being investigated (Li et al., 2005; Adjei, 2006; Erler et al., 2006; Molina et al., 2006). Recent studies on cannabinoids suggest their potential application in the inhibition of tumor cell growth by modulating key survival signaling pathways (Casanova et al., 2003; Carracedo et al., 2006). In the present investigation, we studied the effects of the cannabinoid Δ9-tetrahydrocannabinol (THC) on lung cancer growth and metastasis.

http://www.nature.com/articles/1210641

Prostate cancer cells possess increased expression of both cannabinoid 1 and 2 receptors, and stimulation of these results in decrease in cell viability, increased apoptosis, and decreased androgen receptor expression and prostate-specific antigen excretion.[8]

The role of cannabinoids in prostate cancer: Basic science perspective and potential clinical applications

Juan A. Ramos and Fernando J. Bianco1

Author information ► Copyright and License information ►

This article has been cited by other articles in PMC.

Abstract

article-meta

Prostate cancer is a global public health problem, and it is the most common cancer in American men and the second cause for cancer-related death. Experimental evidence shows that prostate tissue possesses cannabinoid receptors and their stimulation results in anti-androgenic effects. To review currently relevant findings related to effects of cannabinoid receptors in prostate cancer. PubMed search utilizing the terms “cannabis,” “cannabinoids,” “prostate cancer,” and “cancer pain management,” giving preference to most recent publications was done. Articles identified were screened for their relevance to the field of prostate cancer and interest to both urologist and pain specialists. Prostate cancer cells possess increased expression of both cannabinoid 1 and 2 receptors, and stimulation of these results in decrease in cell viability, increased apoptosis, and decreased androgen receptor expression and prostate-specific antigen excretion. It would be of interest to conduct clinical studies utilizing cannabinoids for patients with metastatic prostate cancer, taking advantage not only of its beneficial effects on prostate cancer but also of their analgesic properties for bone metastatic cancer pain.

INTRODUCTION

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3339795/?tool=pubmed

In colorectal carcinoma cell lines, cannabidiol protected DNA from oxidative damage, increased endocannabinoid levels and reduced cell proliferation in a CB(1)-, TRPV1- and PPARγ-antagonists sensitive manner. It is concluded that cannabidiol exerts chemopreventive effect in vivo and reduces cell proliferation through multiple mechanisms.[9]

 

J Mol Med (Berl). 2012 Aug;90(8):925-34. doi: 10.1007/s00109-011-0856-x. Epub 2012 Jan 10.

Chemopreventive effect of the non-psychotropic phytocannabinoid cannabidiol on experimental colon cancer.

Aviello G1, Romano B, Borrelli F, Capasso R, Gallo L, Piscitelli F, Di Marzo V, Izzo AA.

Author information

Abstract

Colon cancer affects millions of individuals in Western countries. Cannabidiol, a safe and non-psychotropic ingredient of Cannabis sativa, exerts pharmacological actions (antioxidant and intestinal antinflammatory) and mechanisms (inhibition of endocannabinoid enzymatic degradation) potentially beneficial for colon carcinogenesis. Thus, we investigated its possible chemopreventive effect in the model of colon cancer induced by azoxymethane (AOM) in mice. AOM treatment was associated with aberrant crypt foci (ACF, preneoplastic lesions), polyps, and tumour formation, up-regulation of phospho-Akt, iNOS and COX-2 and down-regulation of caspase-3. Cannabidiol-reduced ACF, polyps and tumours and counteracted AOM-induced phospho-Akt and caspase-3 changes. In colorectal carcinoma cell lines, cannabidiol protected DNA from oxidative damage, increased endocannabinoid levels and reduced cell proliferation in a CB(1)-, TRPV1- and PPARγ-antagonists sensitive manner. It is concluded that cannabidiol exerts chemopreventive effect in vivo and reduces cell proliferation through multiple mechanisms.

PMID: 22231745 DOI: 10.1007/s00109-011-0856-x

[Indexed for MEDLINE]

https://www.ncbi.nlm.nih.gov/pubmed/22231745

https://www.ncbi.nlm.nih.gov/pubmed/22231745

Ovarian cancer represents one of the leading cause of cancer-related deaths for women and is the most common gynecologic malignancy. Results with medical marijuana support a new therapeutic approach for the treatment of ovarian cancer. It is also conceivable that with available cannabinoids as lead compounds, non-habit forming agents that have higher biological effects could be developed.[10]

Examination of a number of human leukaemia and lymphoma cell lines demonstrate that CB2 cannabinoid receptors expressed on malignancies of the immune system may serve as potential targets for the induction of apoptosis. Also, because CB2 agonists lack psychotropic effects, they may serve as novel anticancer agents to selectively target and kill tumors of immune origin.[11] Plant-derived cannabinoids, including Delta9-tetrahydrocannabinol (THC), induce apoptosis in leukemic cells.[12]

 

Cannabinoid-treated tumors showed an increased number of apoptotic cells. This was accompanied by impairment of tumor vascularization, as determined by altered blood vessel morphology and decreased expression of proangiogenic factors (VEGF, placental growth factor, and angiopoietin. Abrogation of EGF-R function was also observed in cannabinoid-treated tumors.[13] These results support a new therapeutic approach for the treatment of skin tumors.

Hepatocellular carcinoma (HCC) is the third cause of cancer-related death worldwide. When these tumors are in advanced stages, few therapeutic options are available. In this study, the effects of cannabinoids–a novel family of potential anticancer agents–on the growth of HCC was investigated. It was found that Δ(9)-tetrahydrocannabinol (Δ(9)-THC, the main active component of Cannabis sativa) and JWH-015 (a cannabinoid receptor 2 (CB(2)) cannabinoid receptor-selective agonist) reduced the viability of the human HCC cell lines Cannabinoids were able to inhibit tumor growth and ascites in an orthotopic model of HCC xenograft.[14] These findings may contribute to the design of new therapeutic strategies for the management of HCC.

Both cholangiocarcinoma cell lines and surgical specimens from cholangiocarcinoma patients expressed cannabinoid receptors. THC inhibited cell proliferation, migration and invasion, and induced cell apoptosis. THC also decreased actin polymerization and reduced tumor cell survival in anoikis assay. pMEK1/2 and pAkt demonstrated the lower extent than untreated cells. Consequently, THC is potentially used to retard cholangiocarcinoma cell growth and metastasis.[15]

Smoking marijuana might decrease the smoker’s risk for bladder cancer, a new study shows. Retrospectively analyzing a large database of patients, researchers at Kaiser Permanente in California found that patients who reported cannabis use were 45% less likely to be diagnosed with bladder cancer than patients who did not smoke at all.

THC is a potent inducer of apoptosis, even at 1 x IC(50) (inhibitory concentration 50%) concentrations and as early as 6 hours after exposure to the drug.

 

Blood. 2005 Feb 1;105(3):1214-21. Epub 2004 Sep 28.

Cannabis-induced cytotoxicity in leukemic cell lines: the role of the cannabinoid receptors and the MAPK pathway.

Powles T1, te Poele R, Shamash J, Chaplin T, Propper D, Joel S, Oliver T, Liu WM.

Author information

Abstract

Delta9-Tetrahydrocannabinol (THC) is the active metabolite of cannabis. THC causes cell death in vitro through the activation of complex signal transduction pathways. However, the role that the cannabinoid 1 and 2 receptors (CB1-R and CB2-R) play in this process is less clear. We therefore investigated the role of the CB-Rs in mediating apoptosis in 3 leukemic cell lines and performed microarray and immunoblot analyses to establish further the mechanism of cell death. We developed a novel flow cytometric technique of measuring the expression of functional receptors and used combinations of selective CB1-R and CB2-R antagonists and agonists to determine their individual roles in this process. We have shown that THC is a potent inducer of apoptosis, even at 1 x IC(50) (inhibitory concentration 50%) concentrations and as early as 6 hours after exposure to the drug. These effects were seen in leukemic cell lines (CEM, HEL-92, and HL60) as well as in peripheral blood mononuclear cells. Additionally, THC did not appear to act synergistically with cytotoxic agents such as cisplatin. One of the most intriguing findings was that THC-induced cell death was preceded by significant changes in the expression of genes involved in the mitogen-activated protein kinase (MAPK) signal transduction pathways. Both apoptosis and gene expression changes were altered independent of p53 and the CB-Rs.

PMID

https://www.ncbi.nlm.nih.gov/pubmed/15454482

 

These effects were seen in leukemic cell lines (CEM, HEL-92, and HL60) as well as in peripheral blood mononuclear cells.[16] Cannabinoids represent a novel class of drugs active in increasing the life span in  mice carrying Lewis lung tumors and decreasing primary tumor size.[17]

Research has also found a cannabidiol-driven impaired invasion of human cervical cancer (HeLa, C33A) and human lung cancer cells (A549) that was reversed by antagonists to both CB(1) and CB(2) receptors as well as to transient receptor potential vanilloid 1 (TRPV1). The decrease of invasion by cannabidiol appeared concomitantly with up regulation of tissue inhibitor of matrix metalloproteinases-1 (TIMP the findings provide a novel mechanism underlying the anti-invasive action of cannabidiol and imply its use as a therapeutic option for the treatment of highly invasive cancers.[18]

A new anticancer quinone (HU-331) was synthesized from cannabidiol. It shows significant high efficacy against human cancer cell lines in vitro and against in vivo tumor grafts in nude mice. Two non-psychotropic cannabinoids, cannabidiol (CBD) and cannabidiol-dimethylheptyl (CBD-DMH), induced apoptosis in a human acute myeloid leukemia (AML) HL-60 cell line.[19]

Other studies show a synthetic and potent cannabinoid receptor agonist, investigated in hepatoma HepG2 cells and a possible signal transduction pathway that is proposed, indicates a potential positive role in liver cancer.[20] Cannabinoids have been found to counteract intestinal inflammation and colon cancer.[21]

The control of the cellular proliferation has become a focus of major attention as opening new therapeutic possibilities for the use of cannabinoids as potential antitumor agents.[22] Cannabinoid treatment inhibits angiogenesis of gliomas in vivo.[23] Remarkably, cannabinoids kill glioma cells selectively and can protect non-transformed glial cells from death. These and other findings reviewed here might set the basis for a potential use of cannabinoids in the management of gliomas. Other confirming studies may provide the basis for a new therapeutic approach for the treatment of malignant gliomas.[24]

Section B

Mechanisms

With allopathic narcotics, Conventional Medicine Kills, Cannabis not only does not, but it heals and acts as an analgesic with no toxic effect

Contrarily to Conventional Medicine’s lethal narcotic medicine, cannabis does not kill. One of the explanations  is because cannabinoid receptors, unlike opioid receptors, are not located in the brainstem areas controlling respiration, lethal overdoses from Cannabis and cannabinoids do not occur.[14

1Adams IB, Martin BR: Cannabis: pharmacology and toxicology in animals and humans. Addiction 91 (11): 1585-614, 1996. [PUBMED Abstract]

2Grotenhermen F, Russo E, eds.: Cannabis and Cannabinoids: Pharmacology, Toxicology, and Therapeutic Potential. Binghamton, NY: The Haworth Press, 2002.

3Sutton IR, Daeninck P: Cannabinoids in the management of intractable chemotherapy-induced nausea and vomiting and cancer-related pain. J Support Oncol 4 (10): 531-5, 2006 Nov-Dec. [PUBMED Abstract]

4Guzmán M: Cannabinoids: potential anticancer agents. Nat Rev Cancer 3 (10): 745-55, 2003. [PUBMED Abstract]

 

 

Discussion

The United States government is… holding patents for its medical use and claiming at the same time that it has no medical use.

One of the most exciting areas of current research in the cannabinoid field is the study of the potential application of these compounds as antitumor drugs

In Summary

Cannabinoids are found to exert their anti-cancer effects in a number of ways and in a variety of tissues.

•Triggering cell death, through a mechanism called apoptosis

•Stopping cells from dividing

•Preventing new blood vessels from growing into tumours

•Reducing the chances of cancer cells spreading through the body, by stopping cells from moving or invading neighbouring tissue

•Speeding up the cell’s internal ‘waste disposal machine’ – a process known as autophagy – which can lead to cell death

All these effects are thought to be caused by cannabinoids locking onto the CB1 and CB2 cannabinoid receptors.  Almost daily we are seeing new or confirming evidence that Cannibinoids can be used to great benefit in cancer treatment of many types

Reference and Precision Notes

 

[1] Crosstalk between chemokine receptor CXCR4 and cannabinoid receptor CB2 in modulating breast cancer growth and invasion. Nasser MW; et al; PLoS One. 2011;6(9):e23901. doi: 10.1371/journal.pone.0023901. Epub 2011 Sep 7;  http://www.ncbi.nlm.nih.gov/pubmed/21915267 .

[2] Cannabidiol as a novel inhibitor of Id-1 gene expression in aggressive breast cancer cells; McAllister SD et al; Mol Cancer Ther. 2007 Nov;6(11):2921-7;

[3] Delta9-tetrahydrocannabinol inhibits cell cycle progression in human breast cancer cells through Cdc2 regulation; Caffarel MM et al; Cancer Res; 2006 Jul 1;66(13):6615-21;

[4] Cannabinoids: a new hope for breast cancer therapy? Caffarel MM et al; Cancer Treat Rev.: 2012 Nov; 38(7):911-8. doi: 10.1016/j.ctrv.2012.06.005. Epub 2012 Jul 7;

[5] Cannabidiol inhibits lung cancer cell invasion and metastasis via intercellular adhesion molecule-1. Ramer R et al; FASEB J.; 2012 Apr;26(4):1535-48. doi: 10.1096/fj.11-198184. Epub 2011 Dec 23;

[6] Cannabinoid receptors, CB1 and CB2, as novel targets for inhibition of non-small cell lung cancer growth and metastasis; Preet A, et al; Cancer Prev Res (Phila). 2011 Jan; 4(1):65-75. doi: 10.1158/1940-6207.CAPR-10-0181. Epub 2010 Nov 19;

[7] Δ9-Tetrahydrocannabinol inhibits epithelial growth factor-induced lung cancer cell migration in vitro as well as its growth and metastasis in vivo; A Preetet al; Oncogene; (2008) 27,339–346; doi:10.1038/sj.onc.1210641; published online 9 July 2007;

[8] The role of cannabinoids in prostate cancer: Basic science perspective and potential clinical applications; Juan A. Ramos and Fernando J. Bianco; Indian J Urol. 2012 Jan-Mar; 28(1): 9–14;.doi:10.4103/0970-1591.94942;

[9] Chemopreventive effect of the non-psychotropic phytocannabinoid cannabidiol on experimental colon cancer. Aviello G et al; ;J Mol Med (Berl); 2012 Aug;90(8):925-34. doi: 10.1007/s00109-011-0856-x. Epub 2012;  Jan 10.;

[10] Cannabinoid receptors as a target for therapy of ovarian cancer. Farrukh Afaq; et al;, Proc Amer Assoc Cancer Res, Volume 47, 2006;

[11] Targeting CB2 cannabinoid receptors as a novel therapy to treat malignant lymphoblastic disease. McKallip RJ et al; Blood. 2002 Jul 15;100(2):627-34.;

[12] Delta9-tetrahydrocannabinol-induced apoptosis in Jurkat leukemia T cells is regulated by translocation of Bad to mitochondria. Jia W et al; Mol Cancer Res.; 2006 Aug;4(8):549-62;

[13] Inhibition of skin tumor growth and angiogenesis in vivo by activation of cannabinoid receptors. Casanova ML et al: J Clin Invest. 2003 Jan;111(1):43-50;

[14] Anti-tumoral action of cannabinoids on hepatocellular carcinoma: role of AMPK-dependent activation of autophagy. Vara D et al; Cell Death Differ; 2011 Jul;18(7):1099-111. doi: 10.1038/cdd.2011.32. Epub 2011 Apr 8.;

[15] The dual effects of delta(9)-tetrahydrocannabinol on cholangiocarcinoma cells: anti-invasion activity at low concentration and apoptosis induction at high concentration. Leelawat Set al;Cancer Invest. 2010 May;28(4):357-63. doi: 10.3109/07357900903405934;

[16] Cannabis-induced cytotoxicity in leukemic cell lines: the role of the cannabinoid receptors and the MAPK pathway; Powles T et al; Blood;.2005 Feb 1;105(3):1214-21; Epub 2004 Sep 28.;

[17] In vivo effects of cannabinoids on macromolecular biosynthesis in Lewis lung carcinomas; Friedman MA; Cancer Biochem Biophys. 1977;2(2):51-4.;

[18] Cannabidiol inhibits cancer cell invasion via upregulation of tissue inhibitor of matrix metalloproteinases-1; Ramer Ret al; Biochem Pharmacol; 2010 Apr 1;79(7):955-66. doi: 10.1016/j.bcp.2009.11.007. Epub 2009 Nov 13;

[19] Gamma-irradiation enhances apoptosis induced by cannabidiol, a non-psychotropic cannabinoid, in cultured HL-60 myeloblastic leukemia cells. Gallily R et al; Leuk Lymphoma.:2003 Oct;44(10):1767-73;

[20] Apoptosis induced in HepG2 cells by the synthetic cannabinoid WIN: involvement of the transcription factor PPARgamma. Giuliano Met et al; Biochimie;. 2009 Apr;91(4):457-65. doi: 10.1016/j.biochi.2008.11.003. Epub 2008 Nov 27.

[21] Cannabinoids in intestinal inflammation and cancer. Izzo AA1, Camilleri M.; Pharmacol Res; 2009 Aug;60(2):117-25. doi: 10.1016/j.phrs.2009.03.008. Epub 2009 Mar 18;

[22] Involvement of cannabinoids in cellular proliferation; López-Rodríguez ML et al; Mini Rev Med Chem; 2005 Jan;5(1):97-106

[23] Hypothesis: cannabinoid therapy for the treatment of gliomas? Velasco G et al; Neuropharmacology;.2004 Sep;47(3):315-23;

[24] Anti-tumoral action of cannabinoids: involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation; Galve-Roperh; Nat Med.; 2000 Mar;6(3):313-9;

 

 

 

Christian Joubert (ACRI director)

Evidence that Nigella Sativa (black seed oil) is clinically superior to many cancer drugs.

Disclaimer: Nothing in this educational blog should be construed as medical advise
2016 (c). Advanced Cancer Research Institute and agents. All Rights Reserved

Trained in Conventional, Traditional Chinese, Naturopathic and Wine medicine, Chris Joubert teaches how to extend a healthy Lifespan to 120 years and beyond. Concomitantly, he also teaches patients and health practitioners how to both prevent and reverse holistically most chronic diseases, including but not limited to neurological disorders like Alzheimer’s disease and depression, autoimmune diseases like Lupus, IBD & Diabetes, Cardiovascular, Respiratory & Joint illnesses, cancer and more. Having had over twenty years of experience with Holistic Oncology, Chris can share some of the best cancer control and reversal protocols that are safe, efficient and cost-friendly. Trained in Law, Professor Joubert also teaches health professionals to better protect their holistic practice when they must deviate from outdated “standards of care”. Joubert is presently working on a Documentary and book that redefines Medicine in light of new discoveries, ancient wisdoms, innovative research, holistic science and Joie de vivre (happiness) happenings. See links on “Contact” and “About” for details.

Posted in Cancer News, Public Policy

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

Recent Posts

Categories

Translate:

Tags

Translate »
error: Content is protected !!
%d bloggers like this: