Cancer Stem Cells in a Nutshell

Cancer stem cells are the small number of cells within a tumor that drive the tumor’s growth. These cells generally make up just 1% to 3% of all cells in a tumor

What are adult stem cells?

Every organ and tissue in the body contains a small number of what scientists call adult stem cells or progenitor cells. These cells have three characteristics in common: 1). Adult stem cells can renew themselves through cell division for long periods of time. 2). Adult stem cells retain the ability to give rise to several (but not all) types of cells in the body. 3). Different types of adult stem cells give rise to different specialized cells. Pancreatic stem cells, for example, are the ancestors of insulin-producing islet cells in the pancreas. Hematopoietic stem cells develop into all the different types of cells in the human blood and immune systems.

Cancer stem cells are a type of adult or progenitor cell found in most types of cancer. These cells generally represent just 1% to 3% of all cells in a tumor, but they are the only cells with the ability to regenerate malignant cells and fuel the growth of the cancer.

Is this the same as embryonic stem cells?

Embryonic stem cells are primitive cells that form inside an early embryo. These cells also can be generated in a laboratory dish during a process called in-vitro fertilization. Four to five days after a human egg is fertilized by sperm, the dividing mass of cells is called a blastocyst. Scientists can remove the inner cell mass from the blastocyst and grow stem cells in a culture dish in the laboratory. Under the right conditions, these stem cells will retain the ability to divide and make copies of themselves indefinitely.

However, unlike adult stem cells, embryonic stem cells have the ability to give rise to any of the more than 200 different types of cells in the human body.

Why is research on cancer stem cells important?

Cancer research focuses on stem cells present in malignant tumors. More Researchers are starting to  believe like we do at the ACR Institute that most current cancer treatments  fail because they don’t address cancer stem cells (CSCs). One hundreds years ago, a scientist called Paget already developed a carcinogenesis theory that he called the “seed and soil” theory of cancer. In this light, we can see CSCs as the seeds or the roots of a plant. If we remove only the leaves but not the root, the plant or weed will grow back. The same is true for cancer: if you do not address the cancer stem cells, the cancer is likely to return. Today, conventional research is now a little more focused on killing these roots, the csc with drugs. But again and again, we at the ARC don’t believe in violence, in this case, biological violence. We prefer to address the CSC intelligently by modulating the signaling networks so that these malignancy-promoting progenitor cells are either cleared by the immune system and other biological mechanisms or converted back to the living terrain into healthy stem cells.

Recent reports show cancer deaths are decreasing, so aren’t we doing a good job already of killing cancer?

In some cancer types, we are doing a decent job, but only in terms of the five years remission. There are few follow-up studies on definite cancer cures. Many of these five years survivors get new cancers from the conventional treatments or their old ones get reactivated. But because these are diagnosed after the five years mark, they are counted as new cancers. Hence, the statistics on cancer success is not consistent with the facts.

It’s also true that many cancers when caught early can be successfully treated and achieve the five years remission. But dismal failure is for advanced cancers that have started to spread. These have low five years survival rates, especially cancers like pancreatic and lung cancers. Most of these cancers, such as breast, stomach, head and neck cancers etc, will also be often resistant to current allopathic cancer therapies. In addition, current chemotherapies and radiotherapies cause severe side effects because they target rapidly dividing cells that including digestive and immune cells. They are also carcinogenic, so they can cause new cancers.  Treatments that target only cancer stem cells and the immune system would be safer, more efficient and less costly.

In what tumor types have cancer stem cells been identified?

Cancer stem cells were first identified in leukemia, breast cancer as well as in brain, colon, multiple myeloma, head and neck, pancreas and central nervous system tumors. When studies, scientists are finding out that more and more cancers depend on CSCs to thrive and metastasize.

How are cancer stem cells identified?

Researchers take samples of tumors removed from patients during surgery, always with the patient’s informed consent. The cells within the tumor are then sorted based on their expression of certain cell markers on their surface. Sorted cells can be injected into mice, which are then watched for new tumor growth. When only specific sorted cells form new tumors, researchers then test those cells for properties of stem cells.

What happens after stem cells are identified?

The next step in conventional oncology is to understand how cancer stem cells work and identify drugs that will kill the stem cells without harming normal cells. In Holistic Oncology, we work differently.

What research is the ACR Institute doing in cancer stem cells?

The work on cancer stem cells is still in early stages, primarily taking place in the clinical setting, on the terrain and we are working on financing a clinical trials on the HIP protocol. Initial case study results are positive, but trials in a larger number of patients is necessary if the goal is to convince oncologists to go holistic.


Translate »
error: Content is protected !!