Holistic Ocean Minerals (HOM) Therapy

The Mineral Table counts 92 minerals, most of which come from stellar activity. According to the best findings, DNA and bacterial life came from smashing comets and burning volcanic eruptions within the Ocean milieu. No where else on Planet Earth can we find the entire gamut of minerals in one milieu. The Ocean Sea or marin milieu is therefore of relevance insofar as healing and optimal longevity are concerned. In this analysis, I will first look at René Quinton’s take on this issue. (Part A) Thereafter, I will follow-up with more recent findings on health and Ocean water. (Part B) I will conclude with a brief review on how Sea Water can be used in both healing and longevity. (Part C)

Part A

Sea Water, Marine Plasma and René Quinton

We are truly a living marine aquarium in which some billion cells are swimming,” René Quinton

Sea water has had a long history of therapeutic use. Referred to as ‘Thalassotherapy’ by the ancient Greeks, sea water therapy has been used for relaxation, regeneration and as a tonic. Books on the healing power of sea water first appeared in the 17th Century. To this day, therapeutic and recreational seaside retreats have remained popular in South France.

Among others, René Quinton was a French scientist who relished the Sea’s mysteries. In 1897, René Quinton published the first comprehensive scientific thesis advocating the medical use of sea water in his book, Seawater Organic Matrix, 1904.

In this perspective, Quinton studied temperatures and salt concentration between species. In his Law of Marine Constancy, he demonstrated that in order for an evolving organism to successfully leave the ocean, it had to take this life-supporting solution with it and that our internal body terrain today has evolved from the sea. The similarity between nutrient profile in micro algae ocean water and mammalian blood nutrient profile corroborates Quinton’s argument. He noted that the ratios of minerals in both fluids were almost identical with the exception of sodium chloride, which he adjusted. Quinton selected sea water from regions which also contained micro algae. (1)

Quinton’s Central Intuition

Known as one of the French “Darwins” (the other being Lamarck), René Quinton argued that Life came from the Sea and the Sea’s essence is therefore present in Life forms, in particular in all animals.

“La vie animale, apparue à l’état de cellule dans les mers, tend à maintenir, pour son haut fonctionnement cellulaire, à travers la série zoologique, les cellules constitutives des organismes dans le milieu marin des origines.” (“Animal life, that had originally appeared in cellular form in the seas, tends to maintain, for its best cellular functioning throughout the zoological species, its fundamental cells in a marine environment similar to its origin”) (2)

To demonstrate this hypothesis, at the prestigious College de France, he tested his intuition by removing dogs’ blood and replacing it with diluted Ocean Sea. All of his dog experimentations showed that Ocean Sea water, once properly diluted, could replace blood plasma. (See Exhibit A). He called his Ocean water “marin plasma” and found that the best extraction medium was in deep ocean water in between 10 and 30 meters within the center of Ocean vortexes. (Ibid).

After proving beyond any reasonable doubt (See Exhibit B) that many diseases can be healed by targeting upstream to diseases’ symptomatology, what he called “le milieu vital”, he and his medical teams in different Parisian public hospitals opened up hundreds of clinics in France. (1) 

However, with the advent of the First World War and allopathic chemical-based medicine, these clinics became less popular. Yet, “le plasma marin” (also known as “sérum de Quinton”) is still part of French medicine, in both drinkable and injectable forms. Just a few years ago, in 2004, the French Government’s Ministry of research celebrated Quinton’s 100 years of scientific influence. However, in 1982,  to be in conformity with European Legislation, the French Government had to remove Quinton’s injectables’ legality, what is called the “AMM” (autorisation de mise sur le marché). (3) At this time, European legislation required the sterilization of injectables. But to work, the Quinton formula needs to be “raw”, unpasteurized and loaded with Life-given the plaktons. (4) As a consequence, the Quinton Laboratoires moved to Aliquante in South Spain. (5). But French doctors still use injectables. (See link on Quinton Praxis)  An “AMM” authorization has been refiled and appears to be still pending (5). The drinkable “ampoules’ have never been banned because these ampoules are made up only of diluted ocean water. There are two type of drinkables, hypertonic and isotonic. (Ibid)  

Part B

Subsequent Research and Praxis on Sea Water

”The germ is nothing, terrain is everything.” – Claude Bernard (1817-1920

Since Quinton, more research has been done on Ocean minerals, including, but not limited to extracting ocean water deeper than what Quinton recommended. Today, these extraction are divided in three categories which correspond to the three distinctly different layers of ocean water – Surface Sea Water where Quiton extracted his plasma, Deep Ocean Water (DOW) and Very Deep Ocean Water (VDOW). Each layer remains separate and autonomous from the others, moving at different speeds and directions from different kinetic forces and having different temperatures, densities and life form status. (6,7)

The surface sea water layer is influenced by sunlight penetration and circulates rapidly in unison with the seasons and wind patterns to a depth of 250 meters. It supports micro and animal life.

The middle layer is deep ocean water or DOW where the water is free of sunlight and life forms. It is characterized not only by its mineral density but cold temperature, cleanliness and trace elements. DOW is present at depths of between 250 and 1500 meters. This deep ocean current moves very slowly under the influence of density and temperature gradients. The high mineral density is attributed to the depth related pressure and the change in temperature from 20 °C+ at the surface to 8 °C at 600 meters depth generates the movement of this layer.

Very deep ocean water has been discovered in a number of troughs in the Atlantic and Pacific Oceans. Depths can range from 1500 meters to 15 kilometers and life forms are supported where volcanic processes bring heat and minerals to the seabed floor.

DOM production begins when the summer ice melts from both Greenland and the Sub Arctic region. The melting water collects minerals and trace elements during its journey to the ocean.

The minerals make the water heavier (DOW) so the water naturally sinks to the ocean floor where it commences a 2000-year journey. It flows southwards down the Atlantic Ocean, moves around the African Cape and then inches north through the Indian Ocean and also into the western Pacific Ocean, first coming close to land at Taiwan, then Okinawa and Hawaii and then arching back south, towards the Antarctica where the changing sea water temperatures from the summer sun force the deep ocean water to the surface to feed the largest micro and macro food chain on our planet. (6,7)

The east coast of Taiwan is directly adjacent to one of the largest reservoirs of accessible DOW. The southern islands off Japan and Hawaii also have land access to deep ocean water. Taiwan´s East Coast is ideally located to siphon deep ocean water directly to the surface from the coast. It is then micro filtered, followed by reverse osmosis to desalinate and concentrate the magnesium and other minerals and trace elements at the expense of sodium chloride. (6,7 )

Part C

Marine Plasma’s Holistic Therapeutic Uses

“Un corps vieillissant serait un aquarium dont l’eau perd sa pureté première et se trouble : mais changez cette eau, et les poissons qui y vivent retrouvent leur vitalité” René Quinton 

Quinton’s plasma is said to contain all of the 92 minerals and trace elements while DOW is supposed to contain around 70 mineral nutrients and trace elements including magnesium (Mg), calcium (Ca) and potassium (K), all in their bio ionic form. To extract these products, DOW is treated with micro filtration and reverse osmosis to desalinate and concentrate magnesium, other minerals and trace elements whilst eliminating the salt (sodium chloride). (6-8) On the other hand, Quinton’s plasma is diluted with spring water to reach the 7 grams per 1000 density of sodium. It is also micro filtered for purity. (Ibid) 

Both Quinton and DOW have been shown to be good source of electrolytes that can help metabolize carbohydrate, proteins and fat plus maintain bone, teeth, muscle function, cardiovascular smoothness, energy metabolism and other health benefits (For the evidence, see below).

Minerals and trace elements that are in their ionic primitive form are key to health maintenance and optimal longevity, as well as immune function and susceptibility to cardiovascular related diseases. Many trace-minerals act as co-factor to enzymatic processes.

To date, Research has shown that ocean minerals and trace elements have three important functions:  They provide the structure to our organs, tissues and bones – calcium, phosphorus, magnesium, fluorine and sulfur.

Their electrolyte form facilitates body fluid activity in tissues to maintain fluid balance, acid-base balance, membrane permeability, tissue irritability (including nerve transmission and muscle contraction). And three, they act as co-factors to multiple biological processes. For example, magnesium alone catalyses up to 600 enzyme and hormone reactions. And without cobalt, vitamin B 12 is worthless. 

Updated Research

Since Quinton’s time, in particular during the last 15 years, there have been many new publications (over 40) establishing Ocean minerals as statistically significant with regards to improved cardiovascular and metabolic function. Recent clinical research from Taiwan, Japan and Korea also shows statistically significant therapeutic health benefits from either topical or oral consumption of DOM. Below, a few illustration of Ocean water’s health benefits.

Eudurance and Peak Athletic Performance

In 2009, scientists at the National Taiwan Ocean University, Keelung, Taiwan, published the first notable wistar rat treadmill fatigue study. Researchers used desalinated deep ocean water processed with ultra-filtration and reverse osmosis to increase magnesium levels and hardness. The water was sourced from the East Coast of Taiwan. The Study showed that the DOM experimental groups were significantly better than the control group regarding exhausting time and the ratio of lactic acid elimination to lactic acid increment. As such, this would be an excellent therapy for professional athletes.  Summarizing the results, the researchers suggested that endurance, adaptation for exercising load and accelerating elimination in fatigue of rats could be improved when fed with DOM of higher hardness and quantity. (9)

In yet another illustration, scientists at Hung Kuang University, Taichung, Taiwan, published a gerbil animal trial in 2014, endorsing the findings of the wistar rat trial and again demonstrating that profiled deep ocean water, significantly improved exercise performance in gerbils subjected to treadmill exercise. (10)

In 2013, Researchers at the department of Sports Sciences, Taipei University conducted a randomized double blind placebo controlled cross-over human study to evaluate the effect of DOW on time recovery from a fatiguing exercise conducted at 30 °C. In this perspective, DOM supplementation resulted in complete recovery of aerobic power within four hours. 

Mechanisms

Muscle power was also elevated above placebo levels within 24 hours of recovery. Increased circulating creatine kinase (CK) and myoglobin, indicators of exercise-induced muscle damage, were completely eliminated by DOM in parallel with attenuated oxidative damage. 

Researchers concluded that the results provide compelling evidence that DOM contains soluble elements, which can increase human recovery following an exhaustive physical challenge. (11).  

Treating Hyperlipidemia,  atherosclerosis and other cardiovascular disorders with Sea Water

Over the last few years, different studies have shown the potential application of DOM for use as a dietary therapy for prevention and complimentary treatment of cardiovascular disease. In 2003, Japanese researchers published their findings regarding the pharmacological activity of DOM directly influencing the serum lipid values of cholesterol fed rabbits (12).

In 2004, the same group also published new findings showing changes to LDL cholesterol in dietary induced hyperlipidemia rabbits, comparing surface sea water, DOW and a control group. 

The plasma LDL cholesterol level was lower in the DOW group than in the surface seawater group. 

Glutathione peroxidase (GPx) activity was significantly higher in the DOW group than in the control group, while there was no difference between the surface seawater and control groups. The level of lipid peroxidation was also significantly lower in the DOW group than in the control group. 

These early findings suggested that DOW may be useful for the prevention of hyperlipidemia and atherosclerosis compared to the surface seawater, and it was found that reduction of the LDL cholesterol level and enhancement of (GPx) activity were involved in these effects (13)

In 2008, a Japanese research group used Hypercholesterolemic rabbits to examine changes due to DOW diet on cardiovascular Hemodynamics (blood flow and pressure). Systolic, diastolic, pulse and mean arterial pressures and total peripheral resistance were significantly lower in the DOW group than in the control group (14)

The first human trial of DOM was conducted in Japan in 2008 with 16 male volunteers examining the effect of Nigari (natural salty sea or lake water) standardized on magnesium in a two way, randomized cross over study. The healthy subjects were given a fat load test prior to measuring effect of postprandial (after meal) hyperlipidaemia. They found that Mg supplementation reduced and delayed the postprandial serum and chylomicron TAG responses after fat loading. The data indicates that Mg supplementation may contribute to preventing the atherogenic process in healthy subjects” (15). 

In addition a series of research papers from Taichung University, Taiwan were published. In 2011, mice trials confirmed similar results to the Japanese findings and concluded that electro-dialyzed DOW benefited high cholesterol dietary mice and recommended that standardized DOM should be pursued as a dietary food ingredient for cardiovascular health. (16). Similar results at the Taichung Medical University were also published in 2011 for hamsters. (17 )

In 2012, Taipei, a major human trial with 42 hypercholesterolemic volunteers were randomly divided into three groups: reverse osmotic (RO) water, DOM (Mg: 395 mg/L, hardness 1410ppm), and magnesium-chloride fortified (MCF) water (Mg: 386 mg/L, hardness 1430ppm). Serum low-density lipoprotein- cholesterol (LDL-C) was also decreased by DOM. Further, total cholesterol levels of subjects in the DOM group were significantly lower than those in the MCF water or RO water groups. (18)

In 2013, Taichung University researchers published an extended rat trial. The study indicated that 0.1 × DOM, 1 × DOM and 2 × DOM decreased the systolic and diastolic pressures in spontaneous hypertensive rats in an eight-week experiment.

 DOM has been shown to reduce serum lipids and prevent atherogenesis in a hypercholesterolemic rabbit model. The results demonstrated that DSW significantly suppressed the serum cholesterol levels, reduced the lipid accumulation in liver tissues, and limited aortic fatty streaks. (19).

Mechanisms 

In 2014, Qingdao Ocean University, China, published a paper showing when DOM was added to HepG2 cells, it decreased the lipid contents of hepatocyte through the activation of AMP-activated protein kinase, thus inhibiting the synthesis of cholesterol and fatty acid, an effect that can be useful for hypolipidemic disorders. (20)

The Metabolic Syndrome: Obesity, Diabetes and more

Research findings from the Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Korea suggests that the dietary use of DOM as a treatment for metabolic syndrome is credible. 

Mechanism

In 2008 the Korean researchers reported DOM could potentially be used as an anti-obesity agent by inhibiting adipocyte differentiation, mediated through the down-regulated expression of adipogenic transcription factors and adipocyte specific proteins. (21)

In 2009, the same Korean researchers published a further study on the anti-obesity and anti-diabetic effects of DOM in obese mice. The control group received tap water and the experimental group received DOM of hardness 1000 for 84 days. The DOM fed group compared to control group reported a 7% body weight decrease, reduced plasma glucose levels by 35.4% and significant increase of glucose disposal after 84 days. The research suggests that the anti-diabetic and anti-obesity activities of DOM were mediated by modulating the expression of diabetes and obesity specific molecules. 

 In 2013, a further diabetes induced mice study was conducted to establish dosage regimes. The researchers concluded that DOM provided a novel activator for glucose uptake. (22-3 ).

Discussion and Conclusion

Tap water flawed.

Taken together, these results provide a possibility that continuous intake of DOM can be of dietary therapeutic value for treatment of obesity and diabetes, cardiovascular disorders and more.

In the decades following his death, René Quinton’s holistic approach to health and prevention of disease gradually declined as pharmaceutical medicines, based more on Pasteur’s Germ Theory, gained popularity within the Medical Schools and Doctors’ surgeries.

In 1982, changes in EU pharmaceutical regulations led to being Quinton was phased out as an injectable medicine. It re-emerged as a nutritional supplement in drinkable form. In 1996, Laboratoires Quinton, based in Alicante, Spain, acquired the legal patents and rights to produce Cellnutrition Quinton products.

Today, increasing antibiotic resistance to modern drugs and the undesirable side effects that they have on people have heralded a welcome renaissance in preventative medicine. Leading health professionals agree that we should be preventing illness, not treating it, while advances in microbiology have demonstrated the important role that cellular health plays in our wellbeing.

Amidst this progressive climate, Quinton is regaining recognition as an important nutritional supplement to maintain cellular health to support your body in its fight to resist illness and disease for a healthy life, full of vitality.

More warranted.

Ch. J.

Text Under construction

Exhibit A

Exhibit B

 

Exhibit C

Dr François Epineuze : 

Reference

(1). Quinton, le sérum de la vie, Maxence Layet et Jean-Claude Rodet, Paris, France: Editions Guy Trédaniel, 2008, ISBN 978-2-7029-0637-8

(2). L’Eau de mer, milieu organique, Masson, édition Encre, Paris, 1904. Book available on the website Gallica

(3). https://www.plantes-et-sante.fr/articles/on-en-parle/2423-quinton-linventeur-de-leau-de-mer-a-injecter

(4). The phytoplanctons and zooplanctons transform marine minerals thanks to which they become assimilable.

(5) https://www.prevention-sante.eu/actus/eau-quinton-mer-therapie

(6) Fogg, G. E. (1875). Algal Culture and Phytoplankton Ecology. Wisconsin: University of Wisconsin Press.

(7).  Matsunaga, K.; Nigi, G.; Suzuki, H.; Yasui, H.; Deein, G. (1998). “Bulletin of the Society for Sea Water Science”. Japan. 52: 315–318.

(8). Toyota, Takayoshi; Nakashima, Toshimitsu (1998). “Comparison of the effects of water-soluble (EDTA) and particulate (Chelex-100) synthetic ligands on the growth of phytoplankton population in the disphotic zone seawater”. Journal of Oceanography. 54 (1): 19–28. doi:10.1007/BF02744378. ISSN 0916-8370.

(9)  Wang, Shang Ta; Hwangi, Deng Fwu; Chen, Rong Huei; Chen, Yoo ChiI (2009). “Effect of Deep Sea Water on the Exercise-Induced Fatigue of Rats”. Journal of Food and Drug Analysis. 17 (2): 133–141.

(10) Wang, Mei-Lin; Chen, Ying-Ju; Cheng, Fu-Chou (2014). “NIGARI (DEEP SEAWATER CONCENTRATE) ENHANCES THE TREADMILL EXERCISE PERFORMANCE OF GERBILS”. Biology of Sport. 31 (1): 69–72. doi:10.5604/20831862.1086735. PMC 3994588. PMID 24917692.

(11). Hou, Chien-Wen; Tsai, Yung-Shen; Jean, Wei-Horng; Chen, Chung-Yu; Ivy, John L.; Huang, Chih-Yang; Kuo, Chia-Hua (2013). “Deep ocean mineral water accelerates recovery from physical fatigue”. Journal of the International Society of Sports Nutrition. 10 (1): 7. doi:10.1186/1550-2783-10-7. ISSN 1550-2783. PMC 3583772. PMID 23402436.

(12) Yoshioka, Saburo; Hamada, Atsuhide; Cui, Tailin; Yokota, Junko; Yamamoto, Sayaka; Kusunose, Masahiko; Miyamura, Mitsuhiko; Kyotani, Shojiro; Kaneda, Ryou (2003). “Pharmacological Activity of Deep-Sea Water: Examination of Hyperlipemia Prevention and Medical Treatment Effect”. Biological and Pharmaceutical Bulletin. 26 (11): 1552–1559. doi:10.1248/bpb.26.1552.

(13) Miyamura, Mitsuhiko; Yoshioka, Saburo; Hamada, Atsuhide; Takuma, Daisuke; Yokota, Junko; Kusunose, Masahiko; Kyotani, Shojiro; Kawakita, Hirohisa; Odani, Kazuhiro (2004). “Difference between Deep Seawater and Surface Seawater in the Preventive Effect of Atherosclerosis”. Biological and Pharmaceutical Bulletin. 27 (11): 1784–1787. doi:10.1248/bpb.27.1784.

(14)  Katsuda, Shin-ichiro; Yasukawa, Takeshi; Nakagawa, Koji; Miyake, Masao; Yamasaki, Masao; Katahira, Kiyoaki; Mohri, Motohiko; Shimizu, Tsuyoshi; Hazama, Akihiro (2008). “Deep-Sea Water Improves Cardiovascular Hemodynamics in Kurosawa and Kusanagi-Hypercholesterolemic (KHC) Rabbits”. Biological and Pharmaceutical Bulletin. 31 (1): 38–44. doi:10.1248/bpb.31.38. PMID 18175939.

(15) Kishimoto, Yoshimi; Tani, Mariko; Uto-Kondo, Harumi; Saita, Emi; Iizuka, Maki; Sone, Hirohito; Yokota, Kuninobu; Kondo, Kazuo (2010). “Effects of magnesium on postprandial serum lipid responses in healthy human subjects”. British Journal of Nutrition. 103 (4): 469–472. doi:10.1017/S0007114509992716. ISSN 1475-2662. PMID 19941679.

(16) Shen, Jui-Lung; Hsu, Tsai-Ching; Chen, Yi-Chen; Hsu, Jeng-Dong; Yang, Lien-Chuan; Tsai, Fuu-Jen; Li, Cheng-Chien; Cheng, Ya-Wen; Huang, Chih-Yang (2012). “Effects of Deep-Sea Water on Cardiac Abnormality in High-Cholesterol Dietary Mice”. Journal of Food Biochemistry. 36 (1): 1–11. doi:10.1111/j.1745-4514.2010.00498.x. ISSN 1745-4514.

(17)  Hsu, Chin-Lin; Chang, Yuan-Yen; Chiu, Chih-Hsien; Yang, Kuo-Tai; Wang, Yu; Fu, Shih-Guei; Chen, Yi-Chen (2011). “Cardiovascular protection of deep-seawater drinking water in high-fat/cholesterol fed hamsters”. Food Chemistry. 127 (3): 1146–1152. doi:10.1016/j.foodchem.2011.01.116. PMID 25214107.

(18)  Fu, Zhao-Yang; Yang, Feili Lo; Hsu, Hsin-Wen; Lu, Yi-Fa (2012). “Drinking Deep Seawater Decreases Serum Total and Low-Density Lipoprotein–Cholesterol in Hypercholesterolemic Subjects”. Journal of Medicinal Food. 15 (6): 535–541. doi:10.1089/jmf.2011.2007. ISSN 1096-620X. PMC 3359629. PMID 22424458.

(19)  Sheu, Ming-Jyh; Chou, Pei-Yu; Lin, Wen-Hsin; Pan, Chun-Hsu; Chien, Yi-Chung; Chung, Yun-Lung; Liu, Fon-Chang; Wu, Chieh-Hsi (2013). “Deep Sea Water Modulates Blood Pressure and Exhibits Hypolipidemic Effects via the AMPK-ACC Pathway: An in Vivo Study”. Marine Drugs. 11 (6): 2183–2202. doi:10.3390/md11062183. PMC 3721228. PMID 23774889.

(20)  He, Shan; Hao, Jiejie; Peng, Weibing; Qiu, Peiju; Li, Chunxia; Guan, Huashi (2013). “Modulation of Lipid Metabolism by Deep-Sea Water in Cultured Human Liver (HepG2) Cells”. Marine Biotechnology. 16 (2): 219–229. doi:10.1007/s10126-013-9540-1. ISSN 1436-2228. PMID 24057172.

(21) Sun, Hwang Hee; Hak, Lee Sung; Ah, Kim Hyun; Won, Yun Jong (2008). “Inhibitory effect of deep sea water on differentiation of 3T3-L1 adipocytes”. Journal of Biotechnology. Biotechnology for the Sustainability of Human SocietyIBS 2008 Abstracts13th International Biotechnology Symposium and Exhibition. 136, Supplement: S442. doi:10.1016/j.jbiotec.2008.07.1026.

(22)  Hwang, Hee Sun; Kim, Hyun Ah; Lee, Sung Hak; Yun, Jong Won (2008). “Anti-obesity and Antidiabetic Effects of Deep Sea Water on ob/ob Mice”. Marine Biotechnology. 11 (4): 531–9. doi:10.1007/s10126-008-9171-0. ISSN 1436-2228. PMID 19083059.

(23)  Ha, Byung Geun; Shin, Eun Ji; Park, Jung-Eun; Shon, Yun Hee (2013). “Anti-Diabetic Effect of Balanced Deep-Sea Water and Its Mode of Action in High-Fat Diet Induced Diabetic Mice”. Marine Drugs. 11 (11): 4193–4212. doi:10.3390/md11114193. PMC 3853723. PMID 24172214.

Leave a Reply

Recent Posts

Categories

Tags